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BENDING OF RECTANGULAR PLATES WITH LARGE DEFLECTIONS

By SauvusL Levy

SUMMARY

The solution of von Kdrmdn’'s fundamental eguations
for large deflections of plates is presented for the case of a
simply supported rectangular plate under combined edge
compression and lateral loading. Numerical soluiions
are given for square plates and for rectangular plates with
a width-span ratio of 8:1. The effective widthe under
edge compression are compared with effective widihe
according to von Kdrmdn, Bengston, Marguerre, and Coz:
and with experimenial results by Ramberg, MePherson,
and Levy. The deflections for a sgquare plate under
lateral pressure are compared with experimental and
theoretical results by Kaiser. It is found that the effective
widthe agree closely with Marguerre’s formule and with
the experimentally observed values and that the deflections
agree with the experimental results and with Kaiser’s work.

INTRODUCTION

Tn the design of thin plates that bend under lateral
and edge loading, formulas based on the Kirchhoff
theory, which neglects stretching and shearing in the
middle surfacs, are quite satisfactory provided that the
deflections are small compared with the thickness. If
deflections are of the same order as. the thickness, the
Kirchhoff theory may yield results that are consider-
ably in error and & more rigorous theory that takes
account of deformations in the middle surface should
therefore be applied: The fundamental equations for
the more exact theory have been derived by von Kérmén
(reference 1); a number of approximate solutions (refer-
ences 2 to 7) have been developed for the case of a
rectangular plate. This paper presents a solution of
von Kfrmén’s equations in terms of trigonometric
series.
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FUNDAMENTAL EQUATIONS
SYMBOLS

An initially flat rectangular plate of uniform thick-
ness will be considered. Ths symbols have the follow-
mg significance:
plate length in z-direction.
plate length in y-direction.
pla.te thickness.
normal pressure,
vertical displacement of points of middle surface.
Young’s modulus.

Poisson’s ratio.
z, y coordinate axes with origin at corner of plate.
3
D=12—(11;‘.7":E)-, flexural rigidity of the plate.
F  stress function.

Subscripts &, m, #, p, ¢, 7, 8, and { represent integers.

Tensile loads, stresses, and strains will be given as
positive values and compressive loads, stresses, and
strains will be designated by a negative sign.

T hygw moe

EQUATIONS FOR THE DEFORMATION OF THIN PLATES

The fundamental equations governing the deformsa-
tion of thin plates were developed by von Kérmén in

reference 1. They are given by Timoshenko (refer-
ence 4, pp 322-323) in essentially the following form:
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The extreme-fiber bending and shearing stresses are
_Eh

e G2
a’w dw
oly=— 2(1 F2)< I-‘azz (5)
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GENERAL SOLUTION FOR SIMPLY SUPPORTED RECTANGULAR
PLATE

A solution of equations (1) and (2) for a simply sup-

ported rectangular plate must satisfy the following

" boundary conditions. The deflection w and the edge

bending moment per unit lengt.h are zero at the edges
of the plate,

=-—-D(azz+ﬂayg =0, when z=0, z=a

D(zmz'l‘#axz =0, when y=0, Y= =b

These conditions are satisfied by the Fourier series

-

. L
Won 2 SI0 m?mnn—'bl- =

(6)

The normal pressure may be expressed as a Fourier

series
—_— p qin — Si‘ _y .
| 2 2 v "’ b

r=1,2,8... #=L28...

)

By substitution equation (1) is found to be satisfied if

PP DTy

. g=0,1,2...
L o
by, cO8 D " cosq-—g'-'-
where 7, Dy are constants equal to the average mem-
brane pressure in the z- and the y-direction (see equation

(3)) and where
bP -°=

g —(Bi+By+Byt Bit Bt By BBy By
4(?’;4-2*3)

- (8)
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and

1 1
B, =§ i[kt(?"k) (@—O—kYg— )WL We-1.00-0
=1 t=}
if g0 and p#0
B,=0, if ¢=0 or p=0
« 1
Be=3 Skt t-+2) (— ) +Rg— 100004900
" if ¢#0
B3=0, if q=0
By=3 Stk +0) () By (gt
:——a 2 ) () (k) (g—?)
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By=0, if ¢=0 or p=0
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—1 @
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if g#0
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if p>=0
Bg=0, if p=0

Equation (2) is satisfied if
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SPECIFIC SOLUTION FOR SQUARE PLATE WITH
SYMMETRICAL NORMAL PRESSURE (u=0.316}

Equation (9) represents a doubly infinite family of
equations. In each of the equations of the family the
coefficients b,, may be replaced by their values as
given by equation (8). The resulting equations will
involve the known normal pressure coefficients p,,, the
cubes of the deflection coefficients wa., and the
knpwn average membrane pressures in the - and the y-
.directions 7, and P,, respectively. The number of these
equations is equal to the number of unknown deflection
coefficients w..

In the solution of the following problems, the first
six equations of the family of equation (9) that do not
reduce to the indeterminate form 0=0 will be used to
solve for the first six deflection coefficients w1, w3,
Wyy, Wss, Vis 80d wg:. The rest of the deflection
coefficients will be assumed to be zero. This assump-
tion of a finite number of coefficients infroduces an
error into the solution. In each problem the magnitude
of this error will be checked by comparing results as the
number of equations used in the solution is increased
from one to six.

The resultant load must be constant in the z-direc-
tion and in the y-direction and the boundaries of the
plate must remain straight. The first condition follows
directly from the substitution of equations (3) and (8)
in the following expressions for the total load:

&
Load in #-direction= f ho’ dy=—P.bh,

. (10)
Load in y-direcﬁion=ﬁ ho,do—=~Pah

The second condition was checked by the substitution
of equations (4), (6), and (8) in the following equations:

Displacement of edges in z-direction

i@
— B8, B 2 2 miont  (LD)

m=] n=l

Displacement of edges in y-direction

_ (T, _1
‘L[" 2

ow
a?)'] %

__ % B2 1;22“%.,, a2

m=] ne=x]

Equations (10) to (12) are independent of = and y,
thus showing that the conditions of constant load and
constant edge dlspla.cement are satisfied by equations (6)
and (8).

The stress coefficients &, , obtained from equation (8)
for & square plate a=5 are given in table 1. Poisson’s
ratio was chosen as p=+/0.1=0.316 for convenience of
computation and because it is charaeteristic of alumi-
num glloys. Substitution of these stress coefficients in
equation (9) gives the equations in table 2 relating the
pressure coefficients p,,, the average membrane pres-
sures in the z- and the y-directions 7, and 7,, and the
deflection coefficients ... As an example of the use
of table 2, the first few terms in the first equation are

pla wlﬂ

— 8D Wi P4 Wiy
0——ZBu o7 G Ban B T
. . .
+0.125 (%) —0.1875 ("-"i—") SE—. . (13)

It will be noted that the equations in table 2 are
cubics and therefore their solution gives three values
for each of the deflection coefficients wpy,,. Some of
these values correspond to stable equilibrium, while the
remaining values are either imaginary or correspond to
unstable equilibrium. Fortunately, if the equa.tmns in
table 1 are solved by a method of successive approxima-
tion, the successive approximations will converge on a
solution corresponding to stable equilibrium.

EDGE COMPRESSION IN ONE DIRECTION. SQUARE PLATE

The following results apply to square plates loaded
by edge compression in the z-direction as shown in
figure 1.

Bxah a o

1
. h
FIGURE L.—Square plate losded by edge compression In r-directicn.
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¥IaURE 8.—Membrane stresses for a square plate under edge compression. A verage odge compression. Average compressive stress In z-directione=p, u=0.316
compressrve stress m z-directlon=p,; u=0.316,

The normal pressure p, and the edge compression in
the y-direction p,ah are zero.. The method of obtaining
a solution of the equations in table 2 for this case con-

sists in assuming values of MT’I and determining by

and 1—0'7;—1 These ca.lc'ulationshavebeen madefor 16 values

of 1—%‘;—‘ increasing by increments of 0.25 from 0 to 4.00;

the results are given in table 3 and figure 2.

successive approximation from their respective equa- The membrane stress coefficients werc computed

P0° Wys Wy Wan Wy, | from table 1 and table 3 with the results given in table
4 ] H ?

%7? Ny

tions the corresponding velues of 4., The membrane stresses for the corner of the plate,
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the cefiters of the edges, and the center of the plate were Poisson’s ratio i is assumed to be 0.316. The edge
then computed from equation (3) and equation (8) | compressions in the z-direction P.gh and in the y-
with the results given in figure 3. At the maximum | direction P,ah are zero. The uniform normal pressure
load computed, the membrane stress at the corner is | is p. The expansion of this pressure in a Fourier
almost three times the average compressive stress ;. series as shown in equation (7) gives pressure coefficients

1rQ
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/
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o
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Average edge strairr € )

Critical strairt ~  €a
FIGURE 5.—Eflective-width curve for a simply supported squeare plate under edge compression; x=0.318.

The extreme-fiber bending and shearing stresses for _ 14y .. .
the center and the corners of the plate were computed P ""—1'8(1') p. The method of obtaining a solution
from equations (5), equation (6), and table 8 with the | of the equations in table 2 for this case consists in
resulis given in figure 4. At the meximum load
compuied, the bending producesa maximum extreme-
fiber stress at the corners of the plate. This stress is
directed at 45° to the z and the ¥ axes and has a value
of about 1¥% times the average median-fiber compres-
sive stress 7;. . ’

The ratio of the effective width to the inifial width :
(defined as the ratio of the actual load carried by the a
plate to the load the plate would have carried if the
stress had been uniform and equal to the Young's
modulus times the average edge strain) was computed
from equation (11} and table 3 with the results given '

T
2]
-t

in figure 5. At the maximum load computed, the 1

average edge strain is 13.5 times the critical strain and E i —

the ratio of the effective width to the initial width is .

0.434. Ly P | 4 _=,
{

As a measure of the error resulting from the use of = -
only six of the equations in the foregoing solution, the | Fmuse 8.—squsre plate loaded by & uniform normal pressure p. Edge compres-
results obtained by using one, three, four, and six of the slon=0. '
equations of the family of equation (9) are given in . Wy g . .
table 5. The convergence is rapid and the same result | 2ssuming values of Tand determining by successive
is obtained with four equations as with six equations. approximation from their respective equations the

4
UNIFORM NORMAL PRESSURE, SQUARE PLATE, EDGE . Wy, s W g3 Wi,
COMPRESSION ZERO corresponding velues of 454 ’: 3 I:' L h’ 3 hl 5

The following results apply to square plates loaded
by & uniform normal pressure as shown in figure 6.

and %‘:'—‘- These calculations have been made for
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eight values of %'—‘-i.ncreasing by increments of 0.50
from 0 to 4.00 with the results given in table 6 and

figure 7.
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FIGURE 7.—Values of coefficlents In fable 6 for deflectfon function wnﬁ Ew.,.

sin ”—'ﬂlzstng for a square plate under uniform normal pressure p. Edge com-

pression=0; 4=0.816. Linear theory from reference 9.
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F1GURE 8.—Membrane stresses for & square plate under uniform normal pressure p.
Edge compressfon=0; p=0.316.

The membrane stress coefficients have been com-
puted from table I and teble 6 with the results given in
table 7.- The membrane stresses have been computed
from table 7, equations (3), and equation (8) for the
corner of the plate, the centers of the edges, and the
center of the plate with the results given in figure 8.
The compressive membrane stress at the corner of the
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plate is seen to exceed consistently the tensile membrane
stress at the center,
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FI1GURE 0.—Extreme-flber bending stresses at the centar and the corner for & square
plate under uniform normal pressure, Edge comprossdon=(; x=0.316. Lincar
theory from reference .

The extreme-fiber bending stresses have been com-
puted from equations (5), equation (6), and table 6 for
the center and the corners of the plate with the results
given in figure 9. Comparison of figures 8 and 9 shows
that the ratio of membrane stresses to extreme-fiber
bending or shearing stresses increases rapidly with
increasing pressure. The two types of stresses are of

" 4
the same order of magnitude at %=400.

As a measure of the rapidity of convergence, the
results obtained by solving with one, three, and six
equations of the family of equation (9) are given in
table 8. The convergence of the value of the pressure
is rapid and monotonic. In the case of the center
deflection, the convergence, however, is oscillatory.
For small pressures the amplitude of oscillation rapidly
decreases (reference 4, p. 316). For larger pressures
the decrease in amplitude of oscillation is less rapid, as
is indicated by table 8 (b), but an estimate of the asymp-
totic value may be obtained by noting that this value,
if it exists, must lie between the value at any particular
maximum (minimum) and the average of that maxi-
mum (minimum) with the preceding minimum (maxi-
mum). Since the next four equations in the series,
nging?%;w%‘,w—;‘—",andw—;‘:—’will cause a decrease in

Weonter Weanter

must lie between
2.704 (the average of 2.666 and 2.743) and 2.743 when

» the correct value of

pat . pat .
FA24T. At higher values of e it may be necess-

sary to use the first ten equations of the family of equa-
tion (9) to get a solution accurate to within 1 percent
for center deflection.
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UNIFORM NORMAL PRESSURE, SQUARE PLATE, EDGE are determined by successive approximation from their

DISPLACEMENT ZERO . ] .
. t uations. Th calculations have been
The following Tesults apply to square plates loaded respective eq wuese

by & uniform normal pressure as shown in figure 10. made for four values of -+ increasing by increments of
0.50 from 0 to 2.00 with the results given in table ¢ and

v -pah ;
T Ty e 1L
The membrane stress coefficients have been com-

puted from table 1 and table 9 with the results given in
table 10, The membrene stresses have been computed
from table 10, equations (3), and ua.tlon (8) for the

prahb— N Y corner of the plate, the centers of edges, and the
x Px @
center of the plate; the results are glven in ﬁgu.re 12.
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k-4
I .
-pyah ' 76 .- - ten”
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FIGURE 10. -Bquare piate loaded by & uniform normal pressure p and. by edge forces - .
—p.ak and —pak sufficient to make the edge displacemment zero. ﬁ / Ve
. L QL4 5 oA g
Poisson’s ratio p is assumed to be 0.316. The average )
edge tensions in the z- and y-directions —p, and —%, ©

are obtained from equations (11) end- (12) by setting
the edge chsplacement equa] to Zero.
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The average tensions —P, and —p, are then substi-

| b
tuted in the equations of table 2, & value of & _h_ is g 160 . 206 ° 300
: patsfEh+
gssumed, and the corresponding velues of _ A, (/aY ENt)c, (¢t A7) p (tonslon) B, (¢/saf EN)p, (o/ ¥ ER%) p (tension)
PO Wia Way Was Wis g Vs C, A 5, (s ER)c (bension) D, (/50 ER) s, (¢ a3 EW9) « (temsion) _
— = — - ' F 12—Membrane stresses f ate under uniform nocmal
B RRR R MR FOVRE (2—Membrane ivsesfr o st plete s pressue®
20
L
Wi 1
' “h >
: L] P
B / |_—1 %
16 T : o
Lirnear the ‘ :
rrear ;ar'y // / L] o . _ . ~
Woenter
L2 L A ///
/ - B
Wayn A /

7 Fren [l S

83}
—~———
b

A

R/ h : ’} .
| |% : : - R

/ ] ’ |
. . _ . e
W3, ¥Wi,s iR ¥i,5 Wi, o

0 <0 80 /20 /60 200 240 260 Sl
pa‘f/Eh*

F1oURE 11.—Values of cocficients in table 9 for deflection function w=z 7-' Eun,n sin 2 sin ﬂ for a square plate under uniform normal pressure p. Edge
displacement =0; p-=0.alﬁ Linear theory Imm reference $.
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The tensile membrane siress at the center of the edge
is seen to be slightly greater than the tensile membrane
stress at the center.

The extreme-fiber bending stresses have been com-
puted from equations (5), equation (6}, and table ¢ for
the center and the corners of the plate with the results
given in figure 13. Comparison of figures 12 and 13
indicates that bending and membrane stresses at the
center of the plate are approximately the same at the
maximmum loads considered.

20
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D, («":8EAD 5, (ayat/EM)x E, (@@l EMc, (¢« EW) o
FIGURE 13.—Extreme-fiber bending stresses at the center and the corner for a square
plate under uniform normal pressure. Edge displacementm(; p=0.816. Linear
theory from reference 9.

As a measure of the rapidity of convergence, the re-
sults obtained by using one, three, and six equations of
the family of equation (9) are given in table 11. The
convergence of the value of the pressure is both rapid
and monotonic. In the case of the center deflection,
the convergence is oscillatory. For small pressures,
this oscillation decreased rapidly (reference 4, p. 316).
For larger pressures the decrease in amplitude of oscil-
lation is less rapid, as is indicated by table 11 (b}, but
an estimate of the asymptotic value may be obtained
by noting that this value, if it exists, must lie between
the value at any particular maximum (minimum) and
the average of that maximum (minimum) with the
preceding minimum (maximum). Since the next four

equations for w—;bi': 1-9’7;4, 'u_%!’ wT“' will cause a decrease in

12‘—‘;:&’, the correct value of ’%;‘—‘-‘—" must lie between
1.827 (average of 1.807 and 1.846) and 1.846 when

4 £
%4=278.5. At higher values of EE%-‘ it may be neces-

sary to use the first ten equations of the family of equa-
tion (9) to get a solution accurate to within 1 percent
for center deflection.
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COMBINED UNIFORM LATERAL PRESSURE AND EDGE
COMPRESSION IN ONE DIRECTION, S8QUARE PLATE

The following results apply to square plates with
simply supported edges loaded by a uniform normal
pressure p and by edge ¢ompression in the z-direction
as shown in figure 1.

Poisson’s ratio x is again assumed to be 0.316. The
edge compression in the y-direction F,ah is zero. The
method ‘of obtaining a solution of the equations in

4
table 2 for this case consists in assuming values of ﬁ;’;‘

and Q—‘%—‘ and determining by successive approximations

from theirrespective equations the corresponding values of

m al
%‘:}, w—h‘ﬁ. w—%‘—‘, w—’:—". w—ii-‘, end 1—"}:—1 These calculations

’ 4
have been made for two values of 5{4: 2.25 and 29.5
and for five values of %" and hence of %?;f corre-

. 4
sponding to each value of %—;; the results are given in

table 12.. o

The ratio of effective width to initial width has been
computed from equation (11) and table 12 with the
results given in the last two columns of table 12 and in
figure 14. The reduction in effective width of square
plates due to the addition of lateral load is scen to be

apprecisble for %>2.25.
+Q i T I T |
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P 6 e
e 285
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SFF
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-2 / - B

Q / 2 3 «
Average edge strain _

(Crifical stram}p.,

Fioune 14.—Eflect of normsl pressure on effective width of a square plate loaded by
edge compression.

As 2 measure of the convergence, the results obtained
by using one, three, four, and six of the equations in
table 2 are given in table 13. The convergence is rapid
and monotonic.



BENDING OF RECTA.NGULAB PLATES WITH LARGE DEFLECTIONS

SPECIFIC SOLUTION FOR A RECTANGULAR PLATE
(a=35) WITH NORMAL PRESSURE SYMMETRICAL TO
AXES OF PLATE

The first two equations of the family of equation (9)
for the case of a rectangular plate whose length is three
times its width (a=3&) are, for p=0.316.

bipa_ Wy DB wy Db wn
A0 42 — o s S s

W\ Wer Y01 Wi (01 )
+0.0632(T‘) —0.1873( ,;—) i 10,2672k )

h
) _ ~ (14)
b‘p_s.:&=0_3703,1_ pzb’2 Waa Way
rEh kR TER* B xER A

Wi Y Wi YWt ‘£=-_1)’
—0.0625( 7 ) +0.267< A ) A +0.125( A
In the previous solutions & close approximation was

obtained with one equation as long as q—”‘—‘,’;’£<1. For

this reason in the following problem only the first two
equations, as given by equation(14), will be used and the

deflections will be limited to values of ?%<1. It

should be noted that the two equations of (14} will be
adequate only as long as the normal pressure can be
described by the first two terms of equation (7):

3xx xY

. T . . .
D=1 szsm?-[-?a.z sin —- sin. 7%

For more complicated pressure distributions as well as
for 2“%)1, more equations of the family of equation

(9) should be used.

The following results apply to rectangular plates
(2=3b) loaded by & uniform lateral pressure p and by
edge compression acting on the shorter edges as shown
in figure 15.

A

I_y

= a

N

Bxbh b Pxbh

L. .

ﬁxﬂw ’
A

Fiaurz 15—Combined normal pressure and edge compression for & rectangular
plate (@=35).

Poisson’s ratio p is taken as 0.316. The edge com-
pression in the y-direction F,ah is zero. The coeffi-
cients p,,. in the Fourier series for the pressure as

given in equation (7) equel r—i (%_—)z p. The method of
obtaining a solution of equations (14) for this case con-

gists of assuming values of %?;and 1%4 and determining
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by successive approximation from their respective
. . W11 o:b?
equations the corresponding values of + and ok

4
These calculations have been made for 13 values of :g—% :

and 2! with the results given in table 14. The ratio
3

of effective width to initial width was computed from
equation (11} and table 14, with the results given in
the last two columns of table 14 and in figure 16.

A
b = (- ‘
1o -
/ 2251 S
4 4.50 P~
/ N
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o
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4 ] ] |
: ! - —
7o b — &AL b pi o
h
2
o 4 12 16

g
Average edge sirain
(Critical sirainfy-.

Fioure 16—Eflect of normal pressure on effective width of a rectangnlar plats
(a=3b) loaded by edge compression on the short sides.

The reduction in effective width of rectangular plates
(@=38b) due to the addition of lateral load is seen to
be less than in the case of square plates (fig. 14).

COMPARISON WITH APPROXIMATE FORMULAS
EFFECTIVE WIDTH

Approximate formulas for effective width have been
derived in references 2, 8, 6, and 7.

Marguerre (reference 2) expresses the deflection for
& square plate by a series similar to equation (6). He
limits himself, however, to w,;, ws;, 2nd sy and in

his numerical work requires that wss== ——;— w0, and that

=0, His stress function corresponds to the first
terms of equation (8). He uses the energy principle to
determine the values of w;; and wy,; instead of the
differential equation given as equation (2) in the present
work. Marguerre’s approximate solution is given as
curve ¢ in figure 17. It is evident that, even though
Marguerre has limited the number of his arbitrary
parameters to two and has taken p=0, his results are
in excellent agreement with the results obtained in the
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present paper. Marguerre’s approximate formule b,/b
=%ye.fe is given as curve b. This curve checks within
about 7 percent with the exact results.

Bengston (reference 3) assumes a sinusoidal deflection
equivalent to the first term in equation (6) in his solu-
tion for a square plate. He then chooses his displace-
ments so that the strain at the supported edges is uni-
form but, in order to do so, he violates equation (1).

-
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The well-known formula of von K&rmén (sce refer-
ence 7) b,/b=+e. /e is plotted as curve a in figure 17.
It is in good agreement with the effective widths ob-
tained in this paper for small values of the ratio efe.,
but is about 20 percent low for e/e,,=4.

Cox (reference 6) in his solution for the simply sup-
ported square plate uses energy methods together with

the approximation that the strain is uniform along the

+LO \
S
AN 25
'sl'b \ \ " 9
-Q“ & \\:\% P
3 BT N Exact and
E?‘g \‘ d \\\ XQC. ; (s —]
B Y~ ~—~—]
3R ° P I B s
O[3
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.2 t
g 2 4 a8 e 12 14
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Averoge edge strain €
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FioURE 17.—Eflective-width curves for a simply supportad square plate according to different sources.

Curve 8ourcs
a reference 7, i‘—@ =
bt 2 Ger
b approximate formuls of reference 2, TV -
[\ approximate solution of referencs 2.
d golution of reference 3.
e " formuls of reference 8, %‘ -0.09+0.80'J '—:5
Exaet derived from present paper.

Owing, to the method of choosing the displacements,
however, the resulting errors should be small. The
energy principle is then used to obtain the solution.
In order to take account of secondary buckling, it is
assumed that buckling of ¥ and ¥ the original wave
length will occur independently and that the resulting
effective width will be the produci of each of the separate
effective widths. Finally, an envelope curve to the
effective widths thus constructed is drawn. This curve
is given as curve d in figure 17.. It differs less than 7
percent from the effective widths obtained in this paper.
The fact that Bengston’s values are lowerindicates that
the increased strength which should result from the con-
ditions of uniform strain at the edges is lost due to the
approximate method of taking account of secondary
buckling.

entire length of narrow element of the panel. Tho
effective-width curve thus obtained is plotted in figure
17 as curve e. It gives effective widths 10 to 20 perceni
below those obtained in this paper.
DEFLECTION UNDER LATERAL PRESSURE

Navier’s solution for the simply supported square
plate with small deflections (linear theory), given in
reference 9, is included in figures 7, 9, 11, and 13. It
is seen that for small deflections the solution given in
this paper is in agreement with Navier's linear theory

Kaiser (reference 5) converted von Karman’s differ-
ential equations into difference equations and caleu-
lated deflections and stresses for a square plate under
constant pressure assuming simple support, at the edges

10,
canter

with zero membrane stress. He obtained
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&
2.47 for %’%.—_118.8. This center deflection is about

25 percent higher than the curve in figure 7; this differ-
ence is probably due to the fact that Kaiser allows dis-
tortion of the edges of the plate. The membrane
stresses calculated by Kaiser are about one-fifth as
large as those given in the present paper. This fact,
as well as 2 comparison of figures 8 and 12, indicates the
large influence of edge conditions on the membrane
stresses.

COMPARISON WITH EXPERIMENTAL RESULTS
EFFECTIVE WIDTH

Extensive experiments on two aluminum-alloy sheet-~
tringer panels 16 inches wide, 19 inches long, and 0.070

s
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specimen the agreement is excellent up to stresses

for which yielding due to the combined bending and
membrane siresses was probably tsking place. In the
case of the 0.025-inch eluminum-alloy specimen the
observed effective width exceeded the calculated values
for e/e..<{7 but the agreement was excellent for e/e., >7,
which appeared to be large enough to reduce the effect
of the torsionsal stifiness of the stringers as a factor in
the edge conditions.

DEFLECTION UNDER LATERAL PRESSURE

Kaiser (reference 5) has conducted & carefully con-

trolled experiment on one simply supported plate. In
this experiment, as in Kaiser’s theoretical work, the

edge conditions are such that the membrane stresses at

Lo 4 -
. ; T T 1T 1T 1
& Test on 0070-irrch 24S-T alclad aluminunr-alioy porel._ |
° Stringers oximared simple support.
o Jest arr 0.025-inich 245-T alumicium-afioy

8 Siririgers provided resfraird agaxmn‘ Fotofion.

; N - . |v&dge sfress exceeds 25,000 ly[sq in !
3l £\
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£ o I~
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Average edge strair €

Critical sfrafr °  €er

FIGURE 18.—Comparison of computed effective width and experimental resilts from reference 8. The critieal strain fs the computed critiesl strain for simply supported
square plates.

and 0.025 inch in thickness are reported in reference 8.
The sheet of the 0.070-inch panel was 24S-T alclad
aluminum-alloy and the 0.025-inch panel was 24S-T
aluminum-alloy sheet. The panels were reinforced by
stringers (0.13 sq in. in area) spaced 4 inches on centers.
Deflection curves measured at the time of the experi-
ments indicated that in the panel having 0.025-inch
sheet the torsionsal stiffness of the stringers was large
enough compered with the stiffness of the sheet to
provide appreciable restraint against rotation at the
edges; in the case of the 0.070-inch alclad aluminum-
alloy panel the stringers approximated a condition of
simple support.

The effective widths r&ulting from these experiments
are plotted in figure 18 using for e, the buckling strain
of a simply supported square plate. It is evident that
in the case of the 0.070-inch alclad aluminum-alloy

the edge are zero. The initial deflections obtained by
Kaiser are in agreement with the results in this paper.
At large deflections, however, the fact that the mem-
brane stress at the edge of the plate weas zero in the
experiment causes the measured deflections to exceed
by apprecigble amounts the deflections caleulated in
this paper.

NatioNaL BUREAU OF STANDARDS,
Wasamaron, D. C., May 27, 1941.
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TABLE 1.—EQUATIONS FOR THE STRESS COEFFICIENTS IN EQUATION (8) FOR A SQUARE PLATE (a=b)
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in Axially Loaded Sheet-Stringer Panels. T, N. No. 684, [ 9. Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill

705809 O - 48 - 11

NACA, 1939. Book Co., Ine., 1940, pp. 117-120.
TABLE 2—COEFFICIENTS FOR SQUARE PLATE IN THE FIRST SIX EQUATIONS OF THE FAMILY OF EQUATION (9)
[p=0.318]
0= 0= Q= Q= 0= 0= R
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TABLE 2.—Continued
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EQUATION (9)—Concluded
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TABLE 4.—VALUES OF COEFFICIENTS IN STRESS FUNCTION OF EQUATION (8) FOR SQUARE PLATE
UNDER EDGE COMPRESSION
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TABLE 3.—VALUES OF COEFFICIENTS IN DEFLECTION
FUNCTION OF EQUATION (6) FOR SQUARE PLATE
UNDER EDGE COMPRESSION

[x=0.316]
- 1
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168 27 | .0700 .228 0488 L00145 | .00313 2,458
13.48 300 | .086 .20 0743 .00273 | .0041 2. 6687
14.97 325 | .12 .a8d 107 00483 | .c0510 2,871
16.78 3.5 | .19 493 151 .008¢3 | .00565 304
18.77 378 .138 .628 L0161 .00302 a.212
21.46 400 | .124 .808 287 L0308  |—.0020 3.378

TABLE 5—CONVERGENCE OF SOLUTION FOR EFFEC-
TIVE WIDTH OF A SQUARE PLATE UNDER EDGE
COMPRESSION AS THE NUMBER OF EQUATIONS
OF THE FAMILY OF EQUATION (9) USED IN THE
SOLUTION IS INCREASED

[x=0.316]
Effective width
Tnitial width
Average edge strain

tical strain T one| Tt Using four | U six

 Caiialia | Ui, Dt | Usor) U
equation | equation | eq n | equation

® (O] @ )

Lo 1.000 1000 1.000 1.000

167 97 V7 07 N

7.01 570 . 535 -525 .

13. 50 .538 .. 480 434 -

TABLE 6.—VALUES OF COEFFICIENTS IN DEFLECTION
FUNCTION, EQUATION (6), FOR SQUARE PLATE
UNDER UNIFORM NORMAL PRESSURE p

[Edge compresston m0; x=0.316]

pat W11 w13 €s1 ;5 W, W@ quntar
o3 || ¥ |5 Ty
¢ a 0% ] 0
121 . 300 00781 . 000814 . 488
2.4 L. 000 02185 « 00254 00156 962
56.9 1. 500 . 0447 . 00066 . 00303 1. 424
9.4 2.000 076 .01532 . 00624 L8N
161 1500 L1196 0299 . 00831 2307
U7 3. 000 16T 0516 0123 2,742
ass 3.500 431 0813 0176 3174
497 4.000 282 116 « 0238 3. 600
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TABLE 7—VALUES OF COEFFICIENTS IN STRESS
FUNCTION, EQUATION (8), FOR SQUARE PLATE
UNDER UNIFORM NORMAL PRESSURE p

[Edge compression=0; x=0.316]

4x?he,2 | 162294 36x0¢,0 | 16x0s,1 [ I6x102 4 36xhy s
pat fo i ERT | 431 2] EM EM EX | igern,,| EM Others
“Fxi 0
BH | gy | 16ebia| D | 36s00s | 160003 | 382700 36xUxs

ERt Ekt EA Ext EXt Em
1) 0.00 0.00 | 0.00 0.00 0.00 @00 0.00 0.00 {000
121 .30 .0L .02 .00 .00 .00 .00 .00 .00
2.4, L19 085 .10 .00 .01 .00 .00 .00 .00
5801 263 .18 .31 .01 .08 .00 .00 00 .00
00.4] 450 .3 .72 04 .13 P .01 00 -00 .00
161 7.08 7T {135 .08 .35 03 | -0 | —.01 .00
by 10.01 1.4 |22 .16 T4 .06 | —.03 [ —.02 .00
358 18,37 216 } 335 P} L3 14 | —.05 | —.04 .00
497 I7.11 127 | 48 49 2% 27T | —.08 | —.07 .00

TABLE 8 —CONVERGENCE OF SOLUTION FOR pai/ERt
AND W center/h OF A SQUARE PLATE UNDER UNI-
FORM NORMAIL PRESSURE AS THE NUMBER OF
EQUATIONS OF THE FAMILY OF EQUATION (9)
USED IN THE SBOLUTION IS INCREASED

{Edge compression=0; g=0.316]

(a) Pressure
palfER
W1
k Using ons | Using thres six
equation equations mm
0 Q.00 0.00 0. 00
i 20.9 0.4 0.4
3 271 249 247
4 672 516 501
(b) Center deflection
W contecd®
1y
A Using one | Using three | Uning six
equation equations | equations
1] 0.000 0.000 @ 000
1 1.000 . 957 . 262
3 3. 000 2.668 2,743
4 4.000 3.436 3. 600
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TABLE 9.—VALUES OF COEFFICIENTS IN DEFLECTION
FUNCTION, EQUATION (6}, FOR SQUARE PLATE
UNDER UNIFORM NORMAL PRESSURE p

{Edge displacementm0; x=0,316]

pal W, [®L3 0, Wy (Wi W1 Weenter
Eht [ TR ) A &

0 a 0 3] .0 0
14.78 . 600 . 0089 . 00095 . 00077 .486
51.4 1.000 .0293 . 00366 . 00262 . 952
132.0 1. 500 . 0585 . 009656 . 00585 1.402
273.8 2.000 - 0978 . 0183 -0100 1.846

TABLE 10—VALUES OF COEFFICIENTS IN~ STRESS
FUNOTION, EQUATION (8), FOR SQUARE PLATE
UNDER UNIFORM NORMAL PRESSURE p

[Edge displacement=(; 4=0.316]

4xbs, 0 10x2hy, o [36xlby, o [16w2ix, & 3bxthe, o
p:at | TERt = R —EW
pat Eht dxthy, 2 16x3y, ¢ Others
BR[| - . B y= Y]
_Pyat | drxlhe,a . 116x3bg, « |38x2bs, ¢ |16wibs, ¢ 36x2b1. 0
T | TEm M | EM | EM En
1} [] 0 0 0 (1] o) [} 0 0
14,78 451 L2080 | .02 .010 001 . 000 000 | .000
51.4 1.816 | 1..174| .132 068 . 008 .0lg | —. 002 | —. 002 | .000
132.0 £.12 125 .41 .21 .02 07 | =01 - a1 .00
218.5 7.38 4,53 .89 Ky .08 .23 .00 .02 .00

TABLE 12.—COMBINED UNIFORM NORMAL PRESSURE AND EDGE
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TABLE 11.—CONVERGENCE OF SOLUTIONS FOR
pat{ERS AND tw.wier/fh OF SQUARE PLATE UNDER
UNIFORM NORMAL PRESSURE AS THE NUMBER
OF EQUATIONS OF THE FAMILY OF EQUATION (9)
USED IN THE SOLUTION IS INCREASBED

[Edge displacement m0; pm0.316]

(a) Pressure
Das/ER
¥1,1 -
] Using one | Using thres | Using six
equatlon equations | equoations
0. 000 0.00 0.00 0. 00
. 500 14.83 14.78 14,78
1.000 51.8 51.4 51.4
1. 500 133.0 132.0 132.0
2. 000 280.2 278.5 8.5
(b) Center deflection
Wq-urn
Wi 1
A Using one | Using thres | Using six
equation equations | equations
0. 000 0.000 0.000 0. 000
1.000 1.000 M4 . 952
1, 500 1. 500 1. 382 1,402
2.000_ 2000 1,807 1,846

COMPRESSION IN ONE DIRECTION FOR

A SQUARE PLATE
[s=0.316]
w0y, pad | wia 1, ¥y, 3 w5 Wy, g Effoctive width Aversge edge strain
| ERT i o . * Tnitial width (Crltical straln)p =0
p¢l

\ @) =225
0. 10 0.00 0. 00134 0. 00134 0.000137 0. 000119 0.000119 0. 000 . 0034

Y] 1,87 00142 .00171 000148 . 0001 L. 973 . 520

.40 2.8 . 0178 . 00241 . 000164 . 000120 . 000135 L9356 . 858

.60 .48 . 00276 - 00400 . 000260 000120 . 000142 887 Lo7

.80 .68 L0045 | .00807 | .000300 | .000I26 | .000158 .832 1.80

® L5

100 0.00 | 00216 | o026 | 000282 | 6.0055 | 0.00185 0.000 0.34

1.30 kN <] 0202 . 0321 . 0037 . 00159 .00173 * ATQ 1,10

L% 304 L0328 -0418 - 0050 . 00162 .00186 . 520 1.60
L7 4.18 039 .055_ . 0068 002 .002 . 536 2.12
2.00 578 . 650 . 081 .ol . 002 .002 -85 206
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TABLE 13.—CONVERGENCE OF SOLUTION FOR EFFEC- | TABLE 14.—COMBINED UNIFORM LATERAL PRESSURE
TIVE WIDTH OF A SQUARE PLATE UNDER COM- p AND EDGE COMPRESSION IN THE DIRECTION

BINED UNIFORM LATERAL PRESSURE AND EDGE OF THE 2-AXIS p,bk FOR RECTANGULAR PLATES
» COMPRESSION AS THE NUMBER OF EQUATIONS OF

a=3b; x=0.31
THE FAMILY OF EQUATION (90 USED IN THE L o
SOLUTION IS INCREASED pit | P | wia | wax | Effective width | Average edge strain
[o=0.316] m = 3 3 Tofifal width (Critical strain},—,
000 | 268 | c.00 0.00 1.000 L0g
Effective width pet 0| 3| .00 .25 .78 L4
(8 Talwiam Tren 25 0} 396 | g0 |* ko t928 L17
00 | 4 [ Co0 75 .83 137
i% | “% | oh| .5 300 Lok
¥11 | Using one | Usingthree | Using foar Usi-nfdx 225 | 102 | .s4 | Co500 ~980 _27S
[ equation | equations | equatfons | equations 295 | 47 | 405 | 1000 -89 .883
i3 | %00 | e | .oy 008 %ot
10 .000 .000 -000 -000 £ 50 7 | ten | .o 928 233
-2 g; -g; -gg -gg 4.50 2.68 780 .200 957 765
-0 -8 -85 385 . 450 | 358 | 800 | 300 047 02
.80 %2 =2 .832 832

¥ Using ons | Using three | T four | U six
[ equstion eguations equations equsations

Loo 033 -000 .000 000

L3 453 479 .47 - .
L&0 .520 . 520 .

L7 551 . 536 . 536 . 536

2.00 556 N . 585 . 535




